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q -state Potts model on the checkerboard lattice 
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Cedex 05, France 
$ Service de Physique des Solides et Resonances Magnetiques, CEN-Saclay, 91191 Gif- 
sur-Yvette, Cedex, France 

Received 25 August 1982 

Abstract. A large q expansion of the partition function of the checkerboard q-state Potts 
model is given up to sixth order in q- ’ / * .  This expansion is used to discuss the following 
two points. First, on the critical manifold, the large q expansion agrees up to this order, 
with the ‘minimal’ solution suggested by the group structure associated with this model. 
Secondly, the latent heat and some correlation functions are discussed from the point of 
view of their functional dependence in the parameters. 

1. Introduction 

In a preceding paper (Jaekel and Maillard 1982), the large q expansion was used to 
check the expression of the partition function of the anisotropic Potts model on the 
critical curve, and also the expression of the latent heat. Some attention was focused 
on the independence of the latter in the anisotropy. 

In the present paper, we extend this work to the case of the checkerboard lattice, 
involving four parameters K1, K 2 ,  K 3  and K4 (figure 1) instead of two. The partition 
function of this model verifies an inverse relation (Maillard and Rammal 1983), one 
can combine to the ‘geometrical’ symmetries (group of the square C4v) of the model. 
All these symmetries generate a symmetry group, allowing one to write functional 
equations satisfied by the partition function. From these functional equations, a 
‘minimal’ solution, on the critical manifold, can be written in the form of an infinite 
product. In order to verify the validity of this solution, the large q expansion, up to 
sixth order in q-1’2, is used. The agreement obtained is suggestive, considering the 
large number of parameters of this model. 

The presence of many parameters, allows us to look at two interesting questions. 
The first one is related to the particular dependence of the latent heat L, on these 
four parameters. In fact, this Potts model can be mapped into an inhomogeneous 
six-vertex model (see 8 3.4). The latter was studied in detail by Baxter (1971), 
suggesting a very particular expression for the polarisation P. The deduced expression 
for the latent heat will show a non-trivial dependence on the parameters {Ki}: the 
large q expansion confirms this property. 

The second question concerns the parameter dependence of a ‘diagonal’ correlation 
function, on the anisotropic Potts model (K1= K 3 ,  K 2  = K4), invariant by the symmetry 
KI c*K2 and also under an automorphy group G (Jaekel and Maillard 1983). In the 
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Ising limit (q  = 2), this correlation function, invariant under the group G, is only a 
function of the algebraic invariant of this group, k = sinh 2K1 sinh 2K2. We see, using 
the large q expansion, that this property does not generalise to the Potts model: the 
diagonal correlation function is not only a function of the algebraic invariant of the 
group. 

2. Diagrams and expansion 

Let us denote a = eK1, b = eK2, c = eK3, d = eK4. The partition function per site 2, is 
given as usual by 

where each spin U belongs to Z, and the ordered sequences (ij), ( j k ) ,  (kl), (li) denote 
the edges of the N plaquettes. 

Z ( a ,  6, c, d )  = (l/q)[(a + q  - 1)(b + q  - l)(c + q  - l)(d + q  - 1)]'I2A(a, b, c, d )  

where l / a *  = (a  - l ) / (a  + q  - 1 ) + 0  (similar expressions for l / b * ,  l /c* and l/d*). 

In A(a ,  6, c, d )  

The large q expansion will give the expansion of A(a,  6, c, d )  defined by: 

(2.2) 

The parameters of the large q expansion (T>T,)  are l /a*,  1/b*, l /c* and l /d*  

1 1 1 1  
a* 6* c *  d* 

= D(q - 1)- - - - ] 0 = 2  

+ . . . .  
In this expansion, one will also use the following expansion parameters 

1 u - t  
o(q - ' I 2 )  -- - t7 = 

a* 1 - u t  b* 1 - u t  
- -- 

-1/*) 
1 U - t  

- t y  = o(q 
- 

where t + ( l / t )  = q l i 2 .  

The order of each diagram is given by: U = L - 2B, where 0 = order in q-"2 (or 
t ) ,  L = number of links and B = number of loops. 

The diagrammatic rules were given in a preceding work (Jaekel and Maillard 
1982), and will not be recorded here. Up to 6th order, we have 62 connected and 9 
disconnected diagrams. The highest power in q (numbers of loops) is 9, and the 
largest number of links is 24. The expression of In A calls for two remarks. First, the 

f Note a misprint in equation (2.2) of Jaekel and Maillard (1982a). .\ should be replaced by ,\/9, 
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invariance with respect to the square group C4", satisfied by In A, has to be taken 
carefully into account, as can be seen in the following two examples. 

containing 8 terms in opposition to 

which involves only 4 terms. 

diagrams, as seen in the following three examples. 
Secondly, as usual, the main difficulty lies in the counting of the disconnected 

( m E ) ( q  -1)*(q - 2 ) 2 ( - 3 ) a * 4 b * 4 c * 4 d ~ 4 ( ~ * d * + b * c * + a * d * + a * b * ) .  1 

This development has been computed up to the sixth order in q-"2 (resp. t )  and, to 
facilitate further comparison with other results, In A has been obtained in terms of 
variables U, U, w,  z and t. In order to proceed further in the large 4 expansion, a 
more algebraic series expansion technique is needed. For our discussion (see below) 
the above o ( f )  expansion is sufficient. We write the result in a condensed form, 
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s o  = uvwz, SI = U  + U  + w + z ,  

SZ = uv f v w  + wz +zu f u w  + v z ,  s 3 = v w z  + u w z  + U V Z  +uvw 

s4 = ( v z ) 2 +  ( U z y  + ( V w y  + ( U W y  + ( w z ) 2 + ( u v ) 2 ,  

Sk = u v z 2 + U W Z 2 + U 2 W Z + U 2 V Z + U v W  + v  u w + u  v w + u z v  

s s  = UW 2 2 2  + u w 2 z 2 +  v 2 w z 2  + u 2 w z 2  + u v 2 z 2  + u 2 v z 2  + v 2 w  2z  + u 2 w 2 z  

2 2  2 2 

2 + u z w 2 + v W z 2 + W Z v 2 + V ~ W  , 

+ U 2v 2z + uv2 w + U 2vw + U 2v w ,  

and 

s6 = (Llvw)2 + ( U v Z ) ’  f (uWz)’+ (VwZ)’. 

One remarks that, in the special case of the anisotropic Potts model: U = w and 
v = z ,  one recovers the result obtained for In A in the previously mentioned work. 

3. Applications. Partition function, latent heat and correlation functions 

The preceding expansion for the partition function can be used to check some 
conjectures, or natural extensions of well known results, on the checkerboard q-state 
Potts model. Amongst other things, we will study the partition function, the latent 
heat and a special correlation function. 

3.1. Partition function at criticality 

We have already noticed (Maillard and Rammal 1983) that the partition function of 
the checkerboard q-state Potts model satisfies the inverse relation: 

(3.1) 

These functional equations suggest a ‘minimal’ solution, on the critical manifold 
(uvwz = l), for the partition function in the form of an infinite product, produced by 
the action of the group G generated by the inverse relation (3.1) and the symmetries 

f The notion of inverse relation was first introduced in statistical mechanics by Stroganov (1979) and 
extensively used by Baxter (1980). 
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(3.2). This solution can be written 

q F ( u ) F ( l / u )  F ( u ) F ( l / u )  F(w)F(l/w) F(z)F( l /z )  Z2(U, U, w, 2) = 7 t 1-tu 1 - tu 1 - tw 1 - tz  
with 

uuwz = 1 

and where 

(3.3) 

(3.4) 

From (3.3), we deduce 

One remarks that (3.3) reproduces the known results (Baxter et a1 1978, Maillard and 
Rammal 1983) for the anisotropic square lattice (U = w, U = z ) ,  for the triangular 
lattice ( z  + l / t )  and for the honeycomb lattice ( z  + t ) .  

In A(u, U, w, z )  

Expanding (3.6), up to the sixth order in t, one obtains 

1 4  =tZ-$t3(uwz + U W Z  + U U Z  + u u w ) - % ~  

+ Y ( u  + U  + w  + z  +uwz +uuz +uuw +uwz) 

+ t6[tf - : ( u 2 w 2 z 2  + 2wzz2 + u 2 u 2 z 2  + u2U2w 2)3  + o(t7) (3.7) 
(3.7) coincides with the large q expansion result (2 .5 )  at SO=UUWZ = 1. This remark- 
able agreement, despite the great number of variables, supports the validity of (3.3) 
for the exact expression of the critical partition function at q > 4. 

Of course a part of the agreement between (3.6) and (3.7) is a direct consequence 
of their C4" invariance. However, a more detailed study is needed to see how much 
of the agreement is non-trivial. (Equation (3.7) is a large q expansion of a free energy 
having precise analytical and thermodynamic properties (convexity. , , ) and is 
invariant under G. On the other hand (3.6) is invariant under G, but its precise 
expression is obtained finally from the minimality assumption.) 

3.2. The latent heat 

It is known that the latent heat L, of the anisotropic Potts model (for q >4), up to a 
known factor, has a simple expression which does not depend on the anisotropy of 
the model (Baxter 1973). It is natural to ask if this is a general property, that is to 
say if we have 

where P is only a function of t, given by 

(3.9) 

(as usual p denotes l /T).  
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Using the large 4 expansion (2 .5 ) ,  we can answer this question positively. Consider- 
ing the high-temperature and low-temperature versions of the large 4 expansion (via 
the duality relations), and taking the difference of the corresponding first derivatives, 
one gets from (2 .5 )  

- lnA(u,u,w,z)  

) 1 (1 -4 t2+4f4+  o(r’)). (3.10) 1 du 1 du 1 dw 1 d t  --+--+--+-- 
U d p  U d p  w d p  d p  u v w z = l  

Hence, this remarkably simple dependence of L, on the variables U, U, w and z ,  is 
supported by our large 4 expansion?. 

3.3 Next-nearest neighbour two-point correlation function 

Recently, the inverse relation ideas have been generalised to obtain functional relations 
satisfied by a spin-spin correlation function (Jaekel and Maillard 1983). For instance, 
in the case of the simple anisotropic Potts model, the correlation function between 
next-nearest-neighbour spins (see figure l), satisfies the inverse relations 

( S U x , 0 k ) ( a 3  6)=(SU8,Ulc)(1/a7 2 - q  - b )  (3.11) 

Figure 1. Elementary cell of the checkerboard lattice. 

for every a and b. This correlation function is obviously symmetric in a and b. By 
consequence, (Sui,,,) is invariant under the action of the group generated by these two 
transformations. 

In the Ising limit (q  = 2), (S,i,,k) reduces to a function of the algebraic invariant 
(k = sinh 2K1 sinh 2Kz) of the symmetry group. In the anisotropic Potts model, the 
corresponding algebraic invariant is nothing other than the product uv. Hence, it is 
legitimate to check the dependence of (S,,,,), in the variable uu. The expansion (2.5) 

+ Note a misprint in the first line of equation (3.5) of Jaekel and Maillard (1982). f should be replaced by 
f3. The second line remains unchanged. 
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allows us to answer this question. In fact (8u,,uk) can be obtained by carrying out the 
two following operations. 

(i) Taking the limit K4 + CO in the expression of In 2, one obtains the triangular 
lattice limit. 

(ii) taking the derivative of the previous expression with respect to K 3 ,  at K3 = 0, 
one gets up to inessential factor. 

Thus, to obtain the dependence of in the uu variable, it is sufficient to 
calculate (d /dw)  In A (U, U, w, l / t )  at w = r. 

From the expression ( 2 . 5 ) ,  one can see that (8ur,ck), which is invariant under the 
symmetry group, does not depend only on the simple algebraic invariant uu. 

4. Correspondence with generalised six-vertex model 

The ‘equivalence’ of the Potts model in two dimensions, with an ice-rule vertex model 
is well known (see Wu for a review, 1982). In the case of the checkerboard lattice, 
the corresponding six-vertex model is a spatial case of the generalised ferroelectric 
model on a square lattice, studied by Baxter (1971). This correspondence is detailed 
explicitly in the appendix. The important point to be noted here is the equivalence 
between the integrability condition of the generalised ferroelectric model (equation 
(1.7) in Baxter 1971) and the criticality condition of the checkerboard model. It 
seems that this equivalence between these two conditions is general. In particular, 
we verify indirectly the exactness of the expression (3.3) for the partition function 
suggested by our group considerations (equation (1.8) in Baxter, 1971). The same 
argument holds also for the expression of the latent heat L,  given by equation (3.8), 
where P corresponds exactly to the polarisation of the vertex model. In this way, the 
particular dependence of the latent heat on the model parameters, is the counterpart 
of that mentioned by Baxter for the polarisation. 

5. Conclusion 

In this paper, a large q expansion of the checkerboard q-state Potts mode! was given 
up to the sixth order in q-”2. This result was used to discuss essentially three points. 
First, we have checked the agreement of this expansion with the minimal solution 
for the partition function at criticality. Secondly, we have also checked the expression 
of the latent heat. Finally, the dependence of the next-nearest-neighbour two-point 
correlation function, on the algebraic invariant of the automorphy group, was discussed 
for the anisotropic q-state Potts model and we have seen that the correlation function 
despite its G invariance is not a function of the only algebraic invariant of G in contrast 
to the Ising limit. Having several parameters, U, U, w, z and t at our disposal, the 
large q expansion can be used to infirm or confirm many statements on different 
physical quantities (by making elementary operations as derivation, limits,. . .). In 
another way, using this approach, we gain more insight into the complexity of the 
exact solution, away from criticality. 

This simple approach, which consists of exhibiting the ‘minimal’ solution associated 
with the automorphy group, and then to check its validity by diagrammatic calculation, 
can be seen in opposition to standard methods (Bethe-ansatz, star-triangle rela- 
tions. . . ). Despite its simplicity, this method, in counterpart, does not at present give 
very precise information such as the eigenvectors or correlation functions. 
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Appendix 1 

The Potts model, in two dimensions, is equivalent to an ice-rule vertex model. This 
equivalence, first pointed out by Temperley and Lieb (1971) for the square lattice, 
has been generalised by Baxter et aZ(1976), to different lattices. Such correspondence 
can be extended also for the checkerboard lattice. We state only the result. For this 
lattice, we have four sublattices on the corresponding vertex model, denoted 1, 2, 3 
and 4 (figure 2). The weights are given by 

( W I ,  W Z ,  0 3 9  U 5 9  0 6 )  = ( 1 ,  1 ,  Xi, Xi, Ai, Bi) 

Figure 2. The standard six vertex, of respective weights ( w l ,  w 2 ,  w 3 ,  w4, us, w 6 )  for sublat- 
tices 1 and 3; (w3, w4 ,  w2, w1, w6, us) for sublattices 2 and 4. 

where 

i = 1 , 2 , 3 , 4 ;  

Ai = t - ’ / 2 + X i t 1 / 2 ,  

x i  = 4  -112 (e K, - 1 )  

Bi = t ” Z + X i t - ” 2 ,  

The following conventions for the vertex weights on different sublattices are to be used 

(w1, w2, w3, w4, w5, W 6 )  for sublattices 1 and 3 

and 

(03, w 4 , 0 2 ,  w1, W 6 ,  w5)  for sublattices 2 and 4. 

This vertex model can be viewed as a special case of the generalised ferroelectric 
model on a square lattice (Baxter 1971). Using Baxter notations, we are in the case 
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a (I, J) = @(I,  J) = ?(I, J) = 1, and 

x (1, J) = ( 1 - tP (1, J)) 
the parameter t has the same meaning, and only four parameters p ( Z , J )  are to be 
used. If we denote these parameters by pl ,  p 2 ,  p 3  and p4 (pi for sublattices i, i = 
1 ,2 ,3 ,4 ) ,  one obtains, after some simple calculations, p1 = U, p 2  = l / u ,  p 3  = w and 
p4 = l / z .  Thus the integrability condition p ( 1 ,  J) = p ( I ) v ( J ) ,  which reduces to PIP3 = 
p2p4 is equivalent to the criticality condition uuwz = 1. 
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